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Abstract

Monitoring surgical instruments is an essential task in

computer-assisted interventions and surgical robotics. It

is also important for navigation, data analysis, skill as-

sessment and surgical workflow analysis in conventional

surgery. However, there are no standard datasets and

benchmarks for tool identification in neurosurgery. To this

end, we are releasing a novel neurosurgical instrument seg-

mentation dataset called NeuroID for advancing research

in the field. Delineating surgical tools from the background

requires accurate pixel-wise instrument segmentation. In

this paper, we present a comparison between three encoder-

decoder approaches to binary segmentation of neurosurgi-

cal instruments, where we classify each pixel in the image to

be either tool or background. A baseline performance was

obtained by using heuristics to combine extracted features.

We also extend the analysis to a publicly available robotic

instrument segmentation dataset and include its results. The

source code for our methods and the neurosurgical instru-

ment dataset will be made publicly available1 to facilitate

reproducibility.

1. Introduction

Automated instrument identification from surgical video

frames will aid the development of intelligent applications

in instrument tracking, pose estimation, augmented reality

overlay, visual servoing, analysis of surgical phase, and will

aid development of safety mechanisms for surgery. In ad-

dition to benefiting different components in surgery, the po-

sition information of instruments also helps in measuring

the context-awareness of a surgeon, potentially helping to

reduce human errors. Bounding box recognition of instru-

ments is not sufficient due to the coarse boundaries gener-

ated around the regions of interest. The dense prediction

1http://brl.ee.washington.edu/robotics/surgical-robotics/neurosurgical-

instrument-segmentation/

of tool versus background through semantic segmentation

enhances safety by parsing the whole scene without sup-

pressing occluded or slanted objects.

Segmentation of instruments is a challenging task due to

variation in lighting, shadows, instrument overlap, reflec-

tions from tissue on instrument (and vice versa), a range

of textures, and occlusions from blood, fogging or surgeon

interference in the frame[3]. The diverse range of surgi-

cal instruments, resolution of images/videos captured and

conditions in the surgical space (occlusions, rapid appear-

ance changes, specular reflections and blur) also affect the

robustness of tool detection and identification.

Related Work: [7] uses template-matching to compen-

sate the offset error from robot kinematics. Jo et. al[6] make

use of the L*A*B color space, histogram equalization and

Otsus thresholding to segment instruments in robot-assisted

laparoscopic surgery images. Methods like Maximum like-

lihood Gaussian Mixture Models and Naive Bayesian clas-

sifiers (summarized in [3]) can be used to classify pixels

of surgical tools and background. However, these meth-

ods require considerable processing in advance to determine

features. Bouget et. al[4] detect surgical tools by learn-

ing the local appearance and global shape from the training

data. They trained a random forest model over ten feature

channels and the shape model is learned using a linear Sup-

port Vector Machine. The parameters were searched ex-

haustively making it less useful for run-time implementa-

tion. Recent developments in deep-learning have showed

dramatic improvements in segmenting instruments with in-

creased accuracy and real-time performance[2].

Contribution: We generated a labeled dataset for neu-

rosurgical instrument segmentation and identification (Neu-

roID, short for Neurosurgical Instrument Dataset). The

dataset provides pixel-wise annotation for tool versus back-

ground and includes the class of each instrument. The im-

ages were manually annotated using pre-determined labels

for the classes. We have also incorporated variance in con-

ditions by choosing frames from across different surgical

procedures. To evaluate initial performance on the dataset,



we report comparison of four different automated meth-

ods for binary segmentation of neurosurgical instruments.

Some of our approaches were also evaluated on a public

robotic instrument dataset[1] for comparison.

2. Datasets

Neurosurgical Instrument Dataset: The NeuroID

dataset has been generated from five videos recorded in

vivo at the Harborview Medical Center in Downtown Seat-

tle. An application to the Institutional Review Board at

the University of Washington was approved (#2003) to col-

lect de-identified data (with patient consent). The surgi-

cal procedures involved left frontal cavernoma, right sphe-

noid wing meningioma, left petroclival chondrosarcoma,

brainstem cavernoma and right sphenoorbital meningioma.

These procedures tend to use up to five instruments simul-

taneously in the surgical field.

Figure 1. Manual annotation of a collected image frame to iden-

tify different Neurosurgical instruments (grasper, peach), (suction,

blue), (curette, green) and (pickup, magenta).The binary segmen-

tation ground truth from the annotation shows the tool pixels in

white and background pixels in black.

Each video has a resolution of 720 x 480 px and runs at

29.97 frames per second. The images for the surgical tools

dataset were collected every 14th frame to record informa-

tion at an approximate rate of 2 frames per second. A total

of 2400 images have been manually annotated with the help

of neurosurgery fellows. Bounding polygons were used to

generate segmentation ground truth for tool versus tissue

and labels for tool-type. For the networks described in this

paper, we had 850 annotated images ( Fig. 1) available at

the time of training, split into 700 training images and 150

test images with similar distributions. The dataset contains

8 different classes of instruments labeled for purposes of in-

stance segmentation. We have additionally collected 6 more

videos and will increase the size of our dataset and account

for additional variability in surgical conditions.

Robotic Instrument Dataset: For robotic instruments,

the MICCAI 2017 Endoscopic Vision Challenge Instrument

Segmentation [1] dataset was used. Robotic instruments

possess distinct articulated parts unlike neurosurgical in-

struments, namely rigid shaft, articulated wrist and grasper

parts. The MICCAI Challenge supplied a dataset of stereo

images taken from videos recorded in vivo using the da-

Vinci surgical robot system.

3. Methods

In this work, three different deep architectures for binary

segmentation were evaluated. The architectures incorpo-

rated an encoder-decoder structure, where the encoder net-

work consists of successive convolutional layers, pooling

layers and Rectified Linear Unit (ReLU) activations, cap-

turing a compact feature map in an encoded latent repre-

sentation. The pooling layers from the encoder are replaced

with upsampling layers in the symmetric decoder network

for recovering spatial information. The concatenation of

higher resolution features from the downsampled path with

the features in the upsampled section (Fig. 2) provides pre-

cise localization. The first architecture for the tool vs non-

tool identification task is a Vanilla U-net [8]. This showed a

vast improvement in performance compared to a heuristic-

based baseline on both the datasets. The two other network

architectures leverage transfer learning [12]. By modifying

the encoder structure, different latent representations were

obtained - one with a VGG16 encoder network[10] and an-

other using a lightweight MobileNetV2[9] network, to im-

prove runtime while not losing accuracy.

Training: For upsampling in the decoder network, we

used bilinear interpolation for the Vanilla U-net and frac-

tionally strided convolutions/transposed convolution with

the for VGG16-UNet network. We updated our decoder

for MobileUNet based on [11] to create a computationally

efficient solution. The decoder uses a data-dependent up-

sampling technique called DUpsampling that incorporates

better feature aggregation and downsamples the fused fea-

tures to the lowest resolution before merging them.

The energy function used for training was:

L = H log(J) (1)

where, H is binary cross entropy loss function

H = −(ylog(p) + (1− y)log(1− p)) (2)

and J is the Jaccard Index.

The VGG16-UNet and MobileUNet networks were pre-

trained on the ImageNet dataset[5]. The dataset was aug-

mented using translation, random horizontal and vertical

flip, normalization, padding and random crop to increase

its size and learn invariance properties. Each model was

trained for 20 epochs, with a batch size of 4. The networks

used Adam optimizer with an alpha of 0.0001. We used K-

fold cross-validation during training. A threshold was set

to binarize pixel probabilities following validation in each

case. The networks were implemented using PyTorch, with

evaluations on a machine with NVIDIA GTX 1080Ti.

4. Results

To show the relative performance of the neural net-

works with respect to the hand-crafted heuristic baseline



Figure 2. Encoder-Decoder architecture used for instrument segmentation. The number of channels is indicated below the box for a VGG

encoder. The height of the box represents the feature map resolution.The yellow boxes represent convolution blocks, red represents pooling,

blue represents upsampling and gray represents concatenation.

Table 1. Evaluation of performance - Dice Coefficient

Analysis Neurosurgical

Instruments

Robotic

Instruments

Dice IoU Dice IoU

Baseline Method 0.339 0.312 0.516 0.461

Vanilla U-net 0.6740 0.653 0.813 0.724

VGG16-UNet 0.736 0.7102 0.887 0.80

MobileUNet 0.769 0.748 - -

(improved from method in [1]), the Dice coefficient and In-

tersection over Union (IoU) metrics were used to calculate

quality of binary segmentation (Table 1). By incorporating

a lighter MobileNetV2 network and modifying the down-

sampling technique, we were able to improve performance

while generating a faster and lighter network to get best

performance. The performance difference between the two

datasets stem from the range of conditions in the datasets

(more in NeuroID). We will incorporate a larger dataset for

NeuroID in the next training iteration.
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